فایل های دیگر این دسته

دانلود مقاله در مورد رياضيات مهندسي

دانلود مقاله در مورد رياضيات مهندسي - ‏رياضيات مهندسي: ‏فصل اول: ‏بررسي هاي فوريه: ‏مقدمه: تفكيك يك تابع به چند جزء مختلف و يا بسط آن به يك سري...

کد فایل:18277
دسته بندی: مقاله » مقالات فارسی مختلف
نوع فایل:مقاله

تعداد مشاهده: 4760 مشاهده

فرمت فایل دانلودی:.zip

فرمت فایل اصلی: .doc

تعداد صفحات: 52

حجم فایل:150 کیلوبایت

  پرداخت و دانلود  قیمت: 6,000 تومان
پس از پرداخت، لینک دانلود فایل برای شما نشان داده می شود.
0 0 گزارش
  • لینک دانلود و خرید پایین توضیحات
    دسته بندی : وورد
    نوع فایل :  word (..doc) ( قابل ويرايش و آماده پرينت )
    تعداد صفحه : 52 صفحه

     قسمتی از متن word (..doc) : 
     

    ‏رياضيات مهندسي:
    ‏فصل اول: ‏بررسي هاي فوريه:
    ‏مقدمه: تفكيك يك تابع به چند جزء مختلف و يا بسط آن به يك سري گسترده از توابع داراي بورد كاربردي مختلف در رياضي و فيزيك است، يكي از اين موارد بسط توابع برحسب مجموعه اي از توابع هارمونيك مثلثاتي با فركانسها و دامنه اي مختلف است. در اين فصل ضمن آشنايي قدم به قدم به اصول اين روش با كاربردهاي حاصل از آن نيز آشنا مي شويم.
    ‏1-1- توابع متناوب: ‏اگر شكل تابع در فواصل منظم تكرار شود آنرا تناوب گوئيم.
    ‏در مورد يك تابع متناوب مي توان نوشت:
    ‏(1) f (x+T) = f(x)
    ‏در اين رابطه f‏ تابعي از متغير x‏ و دوره تناوب T‏ مي باشد.
    ‏براساس اين تعريف ملاحظه مي شود كه اگر g,f‏ توبام هم پريود باشند، تابعي كه به صورت زير تعريف مي شود نيز با آنها هم پريود است.
    (2) h = af + bg
    sin‏ و cos‏ از جمله توابع متناوبند.
    Sin x 2
    Cos x
    ‏مثال: دوره تناوب Sin x + 3 Cos x‏ چقدر است؟
    ‏ Sin x 2P
    Cos x P
    ‏بنابراين دوره تناوب تابع مذكور 2P‏ ‏مي باشد.
    ‏به اين ترتيب دوره تناوب مجموعه اي توابع به صورت زير برابر 2P‏ خواهد بود.
    (3)f(x)=a.+a1cosx+a2cos2x+…+anconx+b.+b1sinx+b2Sin2x+…+bnSinx
    ‏در بخشهاي بعد ديده مي شود كه مي توان براي تابعي با دوره تناوب 2P‏ ضمن محاسبه ظرائب a1‏ تا a2‏ يك سري مثلثاتي مثل رابطه (3)‏ پيدا كرد.
    ‏مثال: كوچكترين دوره تناوب توابع زير را بدست آوريد:
    ‏الف) sinx‏ ‏ ‏ ب) sin2x‏ ‏ ‏ ج) sin2Px ‏د)‏
    ‏ T=2P ‏ T=P‏ ‏ T=1‏ T=T
    ‏هـ) sin2Pnx ‏و) ‏ ز) ‏
    ‏ T=1/x‏ T=T/n‏ T=4
    ‏ح) ‏ ط) 3sin4x+cos4x
    ‏ T=12P‏ T=P/4
    ‏1-2- توابع متاعد:
    ‏دو تابع f‏ و g‏ را در فاصله (a,b‏) عمود بر هم گوئيم هرگاه داشته باشيم:
    ‏كه به اختصار آنرا به صورت (f.g)=0‏ نمايش مي دهيم. براين اساس:
    (Cosmx, Sin nx)=0
    (Sin mx, Sin nx)=0
    (Cos mx, Sin mx)=0
    ‏در فاصله (0,2‏) تمام اين توابع بر هم عمود هستند.
    ‏توابع تناوب را اعم از اينكه داراي دوره تناوب 2P‏ ‏باشد يا نباشد مي توان برحسب توابع هامونيك cos, sin‏ نوشت. بسط حاصل از تفكيك يك تابع به اجزاء هارمونيكي يك سري فوريه مي گوئيم. اكنون به معرفي سري فوريه مي گوئيم.
    ‏1-3-1- بسط توابع دوره تناوب 2P
    ‏تابعي را با دوره تناوب 2P‏ در نظر بگيريد. اين تابع را با سري مثلثاتي رابطه (3) مي توان جايگزين كرد يعني مي توان نوشت:
    ‏براي اثبات اين ادعا لازم است ضرائب a0‏، an‏ و bn‏ را محاسبه كنيم. محاسبه اين ضرائب با توجه به خاصيت متعاصر تابع هاي هارمونيكي قابل انجام است.
    ‏مثلا براي محاسبه an‏ طرفين رابطه (8)‏ را در cosx‏ ضرب نموده و سپس انتگرال گيري نمائيم.
    ‏+
    ‏1-3-1- بسط تابع با دوره تناوب 2v
    ‏ضرائب a0‏، an‏ و bn‏ ‏=؟
    ‏براي محاسبه a0‏ ‏از طرفين T‏- تا T‏ انتگرال مي گوييم
    ‏براي تعيين ضرائب جملات كسينوسي طرفين را در Cosmx‏ ضرب مي كنيم و از –T‏ تا T
    ‏انتگرال مي گ‏ير‏يم.
    ‏تمامي جملات به جز جمله‏ ‏ ‏در حالتي كه n,m‏ باشد برابر صفرند و در حالت n,m‏ مستقر برابر 2n‏ است

     



    برچسب ها: دانلود مقاله در مورد رياضيات مهندسي رياضيات مهندسي دانلود دانلود مقاله در مورد رياضيات مهندسي رياضيات مهندسي دانلود مقاله مورد رياضيات مهندسي
  • سوالات خود را درباره این فایل پرسیده، یا نظرات خود را جهت درج و نمایش بیان کنید.

  

به ما اعتماد کنید

تمامي كالاها و خدمات اين فروشگاه، حسب مورد داراي مجوزهاي لازم از مراجع مربوطه مي‌باشند و فعاليت‌هاي اين سايت تابع قوانين و مقررات جمهوري اسلامي ايران است.
این سایت در ستاد ساماندهی پایگاههای اینترنتی ثبت شده است.

درباره ما

تمام حقوق اين سايت محفوظ است. کپي برداري پيگرد قانوني دارد.

دیجیتال مارکتینگ   ثبت آگهی رایگان   ظروف مسی زنجان   خرید ساعت هوشمند